Flexural stiffness and composition of the batoid propterygium as predictors of punting ability

Author:

Macesic Laura J.1,Summers Adam P.2

Affiliation:

1. Mount Holyoke College, South Hadley, MA 01075, USA

2. Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA

Abstract

SUMMARY Elasmobranchs (sharks, skates and rays) perform at the extremes of locomotion and feeding (i.e. long migrations, high-speed swimming and durophagy). However, very little is known about their cartilaginous skeletal structure and composition in response to loading regimes. In this study, we investigated a batoid (skate and ray) appendicular skeletal element, the propterygium, and its response to forces experienced during punting (benthic pelvic fin locomotion). Punting places a flexural load on this thin, rod-like element. The goals for our study were to determine: (1) the mechanical and compositional properties of the propterygium and (2) whether these properties correlate with punting ability. Using five batoid species of varying punting ability, we employed a three-point bending test and found that propterygium flexural stiffness (33.74–180.16 Nm2) was similar to values found in bone and could predict punting ability. Variation in flexural stiffness resulted from differences in mineral content (24.4–48.9% dry mass) and the second moment of area. Propterygia material stiffness (140–2533 MPa) approached the lower limit of bone despite having less than one-third of its mineral content. This drastically lower mineral content is reflected in the radius-to-thickness ratio of the cross-section (mean ± s.e.m.=5.5±0.44), which is comparatively much higher than bony vertebrates. This indicates that elasmobranchs may have evolved skeletal elements that increase buoyancy without sacrificing mechanical properties. Our results highlight the functional parallels between a cartilaginous and bony skeleton despite dramatic compositional differences, and provide insight into how environmental factors may affect cartilaginous skeletal development.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference65 articles.

1. Buoyancy;Alexander,1993

2. A survey of shark hard parts;Applegate,1967

3. Adaptive changes in trabecular architecture in relation to functional strain patterns and disuse;Biewener;Bone,1996

4. Sawfishes, guitarfishes, skates, and rays;Bigelow,1953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3