The effect of jaw suspension on cartilage strength in elasmobranchs

Author:

Wilga Cheryl12ORCID,Ferry Lara3ORCID,Dumont Elizabeth4

Affiliation:

1. College of the Environment and Life Sciences University of Rhode Island Kingston Rhode Island USA

2. College of Arts and Sciences University of Alaska Anchorage Anchorage Alaska USA

3. New College of Interdisciplinary Arts and Sciences Arizona State University Tempe Arizona USA

4. School of Natural Sciences University of California Merced Merced California USA

Abstract

AbstractThe jaws and their supporting cartilages are tessellated in elasmobranchs and exhibit an abrupt increase in stiffness under compression. The major jaw‐supporting cartilage, the hyomandibula, varies widely by shape and size and the extent of the load‐bearing role is hypothesized to be inversely related to the number of craniopalatine articulations. Here, we test this hypothesis by evaluating the strength of the hyomandibular cartilage under compression in 13 species that represent all four jaw suspension systems in elasmobranchs (amphistyly, orbitostyly, hyostyly, and euhyostyly). The strength of the hyomandibular cartilages was measured directly using a material testing machine under compressive load, and indirectly by measuring morphological variables putatively associated with strength. The first measure of strength is force to yield (Fy), which was the peak force (N) exerted on the hyomandibula before plastic deformation. The second measure was compressive yield strength (σy, also called yield stress), which is calculated as peak force (N) before plastic deformation/cross‐sectional area (mm2) of the specimen. Our results show that the load‐bearing role of the hyomandibular cartilage, as measured by yield strength, is inversely related to the number of craniopalatine articulations, as predicted. Force to yield was lower for euhyostylic jaw suspensions and similar for the others. We also found that mineralization is associated with greater yield strength, while the second moment of area is associated with greater force to yield.

Funder

University of Alaska Anchorage

University of Rhode Island

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3