Exploring generic principles of compartmentalization in a developmental in vitro model

Author:

Gires Pierre-Yves1ORCID,Thampi Mithun1ORCID,Krauss Sebastian W.1ORCID,Weiss Matthias1ORCID

Affiliation:

1. Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany

Abstract

ABSTRACT Self-organization of cells into higher-order structures is key for multicellular organisms, for example via repetitive replication of template-like founder cells or syncytial energids. Yet, very similar spatial arrangements of cell-like compartments (‘protocells’) are also seen in a minimal model system of Xenopus egg extracts in the absence of template structures and chromatin, with dynamic microtubule assemblies driving the self-organization process. Quantifying geometrical features over time, we show here that protocell patterns are highly organized with a spatial arrangement and coarsening dynamics similar to that of two-dimensional foams but without the long-range ordering expected for hexagonal patterns. These features remain invariant when enforcing smaller protocells by adding taxol, i.e. patterns are dominated by a single, microtubule-derived length scale. Comparing our data to generic models, we conclude that protocell patterns emerge by simultaneous formation of randomly assembling protocells that grow at a uniform rate towards a frustrated arrangement before fusion of adjacent protocells eventually drives coarsening. The similarity of protocell patterns to arrays of energids and cells in developing organisms, but also to epithelial monolayers, suggests generic mechanical cues to drive self-organized space compartmentalization.

Funder

Volkswagen Foundation

Elitenetzwerk Bayern

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3