A biphasic memory curve in the chambered nautilus,Nautilus pompiliusL. (Cephalopoda: Nautiloidea)
Author:
Crook Robyn12, Basil Jennifer12
Affiliation:
1. Brooklyn College, The City University of New York, Brooklyn, NY 11210,USA 2. City University of New York Graduate School and University Center, Ecology,Evolution and Behavior subprogram, 365 Fifth Avenue, New York, NY 10016,USA
Abstract
SUMMARYCephalopods are an exceptional taxon for examining the competing influences of ecology and evolutionary history on brain and behaviour. Coleoid cephalopods (octopuses, cuttlefishes and squids) have evolved specialised brains containing dedicated learning and memory centres, and rely on plastic behaviours to hunt prey effectively and communicate intricate visual displays. Their closest living relative, the primitive nautilus, is the sole remnant of an ancient lineage that has persisted since the Cambrian. Nautilus brains are the simplest among the extant cephalopods, and the absence of dedicated learning and memory regions may represent an ancestral condition. It is assumed that the absence of these regions should limit memory storage and recall in nautilus, but this assumption has never been tested. Here we describe the first evidence of learning and memory in chambered nautilus(Nautilus pompilius). Using a Pavlovian conditioning paradigm, we demonstrate that chambered nautilus exhibits temporally separated short- and long-term memory stores, producing a characteristic biphasic memory curve similar to that of cuttlefishes. Short-term memory persisted for less than 1 h post-training, whereas long-term memory was expressed between 6 and 24 h after training. Despite lacking the dedicated neural regions that support learning and memory in all other extant cephalopods, nautilus expressed a similar memory profile to coleoids. Thus the absence of these regions in the nautilus brain does not appear to limit memory expression, as hypothesised. Our results provide valuable insights into the evolution of neural structures supporting memory.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference44 articles.
1. Agin, V., Dickel, L., Chichery, R. and Chichery, M. P.(1998). Evidence for a short-term memory in the cuttlefish,Sepia. Behav. Proc.43,329-334. 2. Agin, V., Chichery, R., Maubert, E. and Chichery, M. P.(2003). Time-dependent effects of cycloheximide on long-term memory in the cuttlefish. Pharmacol. Biochem. Behav.75,141-146. 3. Agin, V., Poirier, R., Chichery, R., Dickel, L. and Chichery, M. P. (2006). Developmental study of multiple memory stages in the cuttlefish Sepia officinalis.Neurobiol. Learn. Mem.86,264-269. 4. Alves, C., Boal, J. G. and Dickel, L. (2007). Short distance navigation in cephalopods: a review and synthesis. Cogn. Process.doi:10.1007/s10339-007-0192-9 5. Aronson, R. B. (1991). Ecology, paleobiology and evolutionary constraint in the octopus. Bull. Mar. Sci.49,245-255.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|