Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1

Author:

Mai Sören1,Klinkenberg Michael2,Auburger Georg2,Bereiter-Hahn Jürgen1,Jendrach Marina12

Affiliation:

1. Kinematic Cell Research Group, Institute for Cell Biology and Neuroscience, Center of Excellence Frankfurt: Macromolecular Complexes, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany

2. Experimental Neurology, Department of Neurology, University Medical School, Heinrich-Hoffmann-Str. 7, Goethe University, 60590 Frankfurt/Main, Germany

Abstract

Mitochondria display different morphologies, depending on cell type and physiological situation. In many senescent cell types, an extensive elongation of mitochondria occurs, implying that the increase of mitochondrial length in senescence could have a functional role. To test this hypothesis, human endothelial cells (HUVECs) were aged in vitro. Young HUVECs had tubular mitochondria, whereas senescent cells were characterized by long interconnected mitochondria. The change in mitochondrial morphology was caused by downregulation of the expression of Fis1 and Drp1, two proteins regulating mitochondrial fission. Targeted photodamage of mitochondria induced the formation of reactive oxygen species (ROS), which triggered mitochondrial fragmentation and loss of membrane potential in young cells, whereas senescent cells proved to be resistant. Alterations of the Fis1 and Drp1 expression levels also influenced the expression of the putative serine-threonine kinase PINK1, which is associated with the PARK6 variant of Parkinson's disease. Downregulation of PINK1 or overexpression of a PINK1 mutant (G309D) increased the sensitivity against ROS in young cells. These results indicate that there is a Drp1- and Fis1-induced, and PINK1-mediated protection mechanism in senescent cells, which, when compromised, could contribute to the age-related progression of Parkinson's disease and arteriosclerosis.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3