Effects of a titin mutation on negative work during stretch-shortening cycles in skeletal muscles

Author:

Hessel Anthony L.1ORCID,Nishikawa Kiisa C.1

Affiliation:

1. Center for Bioengineering Innovation and Department of Biological Sciences, Northern Arizona University, PO Box 4185, Flagstaff, AZ 86011, USA

Abstract

Negative work occurs in muscles during braking movements such as downhill walking or landing after a jump. When performing negative work during stretch-shortening cycles, viscoelastic structures within muscles store energy during stretch, return a fraction of this energy during shortening, and dissipate the remaining energy as heat. Because tendons and extracellular matrix are relatively elastic rather than viscoelastic, energy is mainly dissipated by cross bridges and titin. Recent studies demonstrate that titin stiffness increases in active skeletal muscles, suggesting that titin contributions to negative work may have been underestimated in previous studies. The muscular dystrophy with myositis (mdm) mutation in mice results in a deletion in titin that leads to reduced titin stiffness in active muscle, providing an opportunity to investigate the contribution of titin to negative work in stretch-shortening cycles. Using the work loop technique, extensor digitorum longus and soleus muscles from mdm and wild type mice were stimulated during the stretch phase of stretch-shortening cycles to investigate negative work. The results demonstrate that, compared to wild type muscles, negative work is reduced in muscles from mdm mice. We suggest that changes in the viscoelastic properties of mdm titin reduce energy storage by muscles during stretch and energy dissipation during shortening. Maximum isometric stress is also reduced in muscles from mdm mice, possibly due to impaired transmission of cross bridge force, impaired cross bridge function, or both. Functionally, the reduction in negative work could lead to increased muscle damage during eccentric contractions that occur during braking movements.

Funder

National Science Foundation

W. M. Keck Foundation

Achievement Rewards for College Scientists Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3