No evidence for DPOAEs in the mechanical motion of the locust tympanum

Author:

Moir Hannah M.1,Jackson Joseph C.1,Windmill James F. C.1

Affiliation:

1. Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW, UK

Abstract

SUMMARY Distortion-product otoacoustic emissions (DPOAEs) are present in non-linear hearing organs, and for low-intensity sounds are a by-product of active processes. In vertebrate ears they are considered to be due to hair cell amplification of sound in the cochlea; however, certain animals lacking a cochlea and hair cells are also reported to be capable of DPOAEs. In the Insecta, DPOAEs have been recorded from the locust auditory organ. However, the site of generation of these DPOAEs and the physiological mechanisms causing their presence in the locust ear are not yet understood, despite there being a number of potential places in the tympanal organ that could be capable of generating DPOAEs. This study aimed to record locust tympanal membrane vibration using a laser Doppler vibrometer in order to identify a distinct place of DPOAE generation on the membrane. Two species of locust were investigated over a range of frequencies and levels of acoustic stimulus, mirroring earlier acoustic recording studies; however, the current experiments were carried out in an open acoustic system. The laser measurements did not find any evidence of mechanical motion on the tympanal membrane related to the expected DPOAE frequencies. The results of the current study therefore could not confirm the presence of DPOAEs in the locust ear through the mechanics of the tympanal membrane. Experiments were also carried out to test how membrane behaviour altered when the animals were in a state of hypoxia, as this was previously found to decrease DPOAE magnitude, suggesting a metabolic sensitivity. However, hypoxia did not have any significant effect on the membrane mechanics. The location of the mechanical generation of DPOAEs in the locust's ear, and therefore the basis for the related physiological mechanisms, thus remains unknown.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3