Measuring Distortion-Product Otoacoustic Emission With a Single Loudspeaker in the Ear: Stimulus Design and Signal Processing Techniques

Author:

Hsiao Wei-Chen,Chen Yung-Ching,Liu Yi-Wen

Abstract

The distortion-product otoacoustic emission (DPOAE) is a backward propagating wave generated inside the cochlea during the wave amplification process. The DPOAE signal can be detected rapidly under relatively noisy conditions. In recent years, the earphone industry demonstrated interest in adopting DPOAE as an add-on feature to make their product “intelligent” of inner-ear status. However, a technical challenge remains to be tackled—the loudspeaker in an earphone generates its own cubic distortion at the same frequency as DPOAE. Unfortunately, the intensity of loudspeaker distortion is typically comparable to that of the DPOAE, if not higher. In this research, we propose two strategies, namely compensation and cancellation, to enable DPOAE measurement with a single loudspeaker. The compensation strategy exploits the part of the growth function of the loudspeaker distortion which is almost linear, and thus suppresses the distortion it generates while retaining a larger portion of DPOAE in the residual signal. The cancellation strategy utilizes a one-dimensional Volterra filter to remove the cubic distortion from the loudspeaker. Testing on normal-hearing ears shows that the compensation strategy improved the DPOAE-to-interference ratio by approximately 7 dB, resulting in a cross-correlation of 0.62 between the residual DPOAE level and the true DPOAE level. Meanwhile, the cancellation strategy directly recovered both the magnitude and the phase of DPOAE, reducing the magnitude estimation error from 15.5 dB to 3.9 dB in the mean-square sense. These pilot results suggest that the cancellation strategy may be suitable for further testing with more subjects.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cancelling Intermodulation Distortions for Otoacoustic Emission Measurements with Earbuds;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3