Effects of repeated daily acute heat challenge on the growth and metabolism of a cold-water stenothermal fish

Author:

Guzzo Matthew M.1ORCID,Mochnacz Neil J.23,Durhack Travis23,Kissinger Benjamin C.4,Killen Shaun S.5,Treberg Jason R.26

Affiliation:

1. Integrative Biology, University of Guelph, Guelph, ON, Canada

2. Biological Sciences, University of Manitoba, Winnipeg, MB, Canada

3. Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada

4. Alberta Parks and Recreation, Grand Prairie, AB, Canada

5. Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK

6. Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada

Abstract

Temperature is an important environmental factor influencing fish physiology that varies both spatially and temporally in ecosystems. In small north-temperate lakes, cold water piscivores rely on nearshore prey; however, this region exceeds the optimal temperature of the foraging species during summer. To cope, piscivores make short excursions into the nearshore to feed and return to cold water to digest, but the physiological impacts of these repeated acute exposures to warm water are not well understood. We exposed juvenile lake trout (Salvelinus namaycush) to treatments where they were held at ≈10°C and exposed to either 17 or 22°C for 5 - 10 min daily for 53 days mimicking warm-water forays. Control fish, held at an average temperature of ≈10°C but not exposed to thermal variation, consumed more food and grew slightly faster than heat challenged fish, with no clear differences in body condition, hepatosomatic index, ventricle mass, or muscle concentrations of lactate dehydrogenase and cytochrome c oxidase. Aerobic metabolic rates measured at 10°C indicated that standard metabolic rates (SMR) were similar among treatments; however, fish that were repeatedly exposed to 17°C had higher maximum metabolic rates (MMR) and aerobic scopes (AS) than control fish and those repeatedly exposed to 22°C. There were no differences in MMR or AS between fish exposed to 22°C and control fish. These results suggest that although SMR of fish are robust to repeated forays into warmer environments, MMR displays plasticity, allowing fish to be less constrained aerobically in cold water after briefly occupying warmer waters.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

W. Garfield Weston Foundation

Fisheries and Oceans Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3