Nervous Mechanisms Underlying Intersegmental Co-Ordination of Leg Movements During Walking in the Cockroach

Author:

PEARSON K. G.1,ILES J. F.1

Affiliation:

1. Department of Physiology, University of Alberta, Edmonton, Canada; and University Laboratory of Physiology, Oxford, England

Abstract

1. The activity in identical motoneurones innervating leg muscles of the three thoracic segments of the cockroach has been recorded in (a) normal walking animals, (b) walking animals after lesions to the nervous system and/or amputation of the mesothoracic legs, and (c) restrained de-afferented preparations. 2. The phase of levator motoneurone burst activity of the mesothoracic leg in the metathoracic cycle is almost 0·5 for all walking speeds above 2 steps/sec, confirming that a tripod gait is used at all but the slowest speeds. 3. The burst-generating systems in each segment are centrally coupled because in de-afferented preparations there is a tendency for the bursts in the mesothoraci segment to begin near the end of the metathoracic bursts, and vice versa. 4. Sensory input from leg receptors is also important in co-ordinating stepping movements of the different legs since (a) there are some differences in motoneurone activity of de-afferented and walking preparations, and (b) amputation of the mesothoracic legs at the trochanter leads to an immediate change in the co-ordination of the remaining four legs. 5. It is proposed that two mechanisms are important in co-ordinating leg movements in a slow walking cockroach (a) mutual inhibition between levator burst-generating systems in adjacent ipsilateral legs, and (b) an inhibitory reflex pathway from the campaniform sensilla of the trochanter to the burst-generating system of each leg. The second of these two mechanisms may become less important as the walking speed increases.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3