Affiliation:
1. Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, SIO mail code 0202, La Jolla, CA 92093, USA
Abstract
ABSTRACT
The vacuolar-type H+-ATPase (VHA) is a multi-subunit enzyme that uses the energy from ATP hydrolysis to transport H+ across biological membranes. VHA plays a universal role in essential cellular functions, such as the acidification of lysosomes and endosomes. In addition, the VHA-generated H+-motive force can drive the transport of diverse molecules across cell membranes and epithelia for specialized physiological functions. Here, I discuss diverse physiological functions of VHA in marine animals, focusing on recent discoveries about base secretion in shark gills, potential bone dissolution by Osedax bone-eating worms and its participation in a carbon-concentrating mechanism that promotes coral photosynthesis. Because VHA is evolutionarily conserved among eukaryotes, it is likely to play many other essential physiological roles in diverse marine organisms. Elucidating and characterizing basic VHA-dependent mechanisms could help to determine species responses to environmental stress, including (but not limited to) that resulting from climate change.
Funder
National Science Foundation
Alfred P. Sloan Foundation
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献