Regenerative responses following DNA damage: β-catenin mediates head regrowth in the planarian Schmidtea mediterranea

Author:

Wouters Annelies1,Ploem Jan-Pieter1,Langie Sabine A. S.23,Artois Tom1,Aboobaker Aziz4,Smeets Karen1ORCID

Affiliation:

1. Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium

2. Vito Health, Mol, Belgium

3. Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium

4. Department of Zoology, University of Oxford, Oxford, UK

Abstract

Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea. Exposure to the genotoxic compound methyl methanesulfonate revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, stem cell responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt-signalling gradient along the body axis modulate stem cell responses to MMS.

Funder

Fonds Wetenschappelijk Onderzoek

The European Marine Biological Resource Centre-Belgium and The Research Foundation Flanders

Medical Research Council

Biotechnology and Biological Sciences Research Council

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3