An X-ray shielded irradiation assay reveals EMT transcription factors control pluripotent adult stem cell migration in vivo in planarians

Author:

Abnave Prasad1,Aboukhatwa Ellen1,Kosaka Nobuyoshi1,Thompson James2,Hill Mark A.2,Aboobaker A. Aziz1ORCID

Affiliation:

1. Department of Zoology, Tinbergen Building, South Parks Road, University of Oxford, Oxford OX1 3PS, UK

2. CRUK/MRC Oxford Institute for Radiation Oncology, ORCRB Roosevelt Drive, University of Oxford, Oxford OX3 7DQ, UK

Abstract

Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infections. Inappropriate migration also underpins the formation of metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate that we can use this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions without local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum. Our work establishes planarians as a suitable model for further in depth study of the processes controlling stem cell migration in vivo.

Funder

Medical Research Council

Biotechnology and Biological Sciences Research Council

Cancer Research UK

John Fell Fund, University of Oxford

H2020 Marie Skłodowska-Curie Actions

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3