Sex-specific transgenerational plasticity: developmental temperatures of mothers and fathers have different effects on sons and daughters

Author:

Seebacher Frank1ORCID,Bamford Stephanie M.1,Le Roy Amelie1ORCID

Affiliation:

1. Heydon-Laurence Building A08, University of Sydney School of Life and Environmental Sciences , , Sydney, NSW 2006 , Australia

Abstract

ABSTRACT Each parent can influence offspring phenotype via provisioning of the zygote or sex-specific DNA methylation. Transgenerational plasticity may therefore depend on the environmental conditions experienced by each parent. We tested this hypothesis by conducting a fully factorial experiment across three generations of guppies (Poecilia reticulata), determining the effects of warm (28°C) and cold (21°C) thermal backgrounds of mothers and fathers on mass and length, and thermal performance (sustained and sprint swimming speeds, citrate synthase and lactate dehydrogenase activities; 18, 24, 28, 32 and 36°C test temperatures) of sons and daughters. Offspring sex was significant for all traits except for sprint speed. Warmer mothers produced sons and daughters with reduced mass and length, and warmer fathers produced shorter sons. Sustained swimming speed (Ucrit) of male offspring was greatest when both parents were raised at 28°C, and warmer fathers produced daughters with greater Ucrit. Similarly, warmer fathers produced sons and daughters with greater metabolic capacity. We show that the thermal variation experienced by parents can modify offspring phenotype, and that predicting the impacts of environmental change on populations would require knowledge of the thermal background of each mother and father, particularly where sexes are spatially segregated.

Funder

Australian Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3