Cockroaches use diverse strategies to self-right on the ground

Author:

Li Chen12ORCID,Wöhrl Toni3ORCID,Lam Han K.2ORCID,Full Robert J.2

Affiliation:

1. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA

2. Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA

3. Institute of Sports Science, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

Abstract

ABSTRACT Terrestrial animals often must self-right from an upside-down orientation on the ground to survive. Here, we compared self-righting strategies of the Madagascar hissing, American and discoid cockroaches on a challenging flat, rigid, low-friction surface to quantify the mechanical principles. All three species almost always self-righted (97% probability) when given time (30 s), frequently self-righted (63%) on the first attempt, and on that attempt did so in 1 s or less. When successful, two of the three species gained and used pitch and/or roll rotational kinetic energy to overcome potential energy barriers (American 63% of all attempts and discoid 78%). By contrast, the largest, heaviest, wingless cockroach (Madagascar hissing) relied far less on the energy of motion and was the slowest to self-right. Two of the three species used rolling strategies to overcome low potential energy barriers. Successful righting attempts had greater rolling rotation than failed attempts as the center of mass rose to the highest position. Madagascar hissing cockroaches rolled using body deformation (98% of all trials) and the American cockroach rolled using leg forces (93%). By contrast, the discoid cockroach overcame higher and a wider range of potential energy barriers with simultaneous pitching and rolling using the wings (46% of all trials) and legs (49%) equally to self-right. Our quantification revealed the performance advantages of using rotational kinetic energy to overcome the potential energy barrier and rolling more to lower it, while maintaining diverse strategies for ground-based self-righting.

Funder

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley

Burroughs Wellcome Fund

Army Research Office

Friedrich-Schiller-Universität Jena

Army Research Laboratory

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3