Resource profitability, but not caffeine, affects individual and collective foraging in the stingless bee Plebeia droryana

Author:

Peng Tianfei1ORCID,Segers Francisca H. I. D.2ORCID,Nascimento Fabio3ORCID,Grüter Christoph1

Affiliation:

1. Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany

2. Department for Applied Bioinformatics, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany

3. Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo 3900, Brazil

Abstract

Plants and pollinators form beneficial relationships with plants offering resources and, in return, they get pollinated. Some plants, however, add compounds to nectar to manipulate pollinators. Caffeine is a secondary plant metabolite found in some nectars that affects foraging in pollinators. In honeybees, caffeine increases foraging and recruitment to mediocre food sources, which might benefit the plant, but potentially harms the colonies. For the largest group of social bees, the stingless bees, the effect of caffeine on foraging behavior has not been tested yet, despite their importance for tropical ecosystems. More generally, recruitment and foraging dynamics are not well understood in most species. We examined whether caffeine affects the foraging behaviour of the stingless bee Plebeia droryana, which frequently visits plants that produce caffeinated nectar and pollen. We trained bees to food sources containing field-realistic concentrations of sugar and caffeine. Caffeine did not cause P. droryana to increase foraging frequency and persistency. We observed P. droryana recruiting to food sources, however, this behaviour was also not affected by caffeine. Instead we found that higher sugar concentrations caused bees to increase foraging effort. Thus, unlike in other pollinators, foraging behaviour in this stingless bee is not affected by caffeine. As the Brazilian P. droryana population that we tested has been exposed to coffee over evolutionary time periods, our results raise the possibility that it may have evolved a tolerance towards this central nervous system stimulant. Alternatively, stingless bees may show physiological responses to caffeine that differ from other bee groups.

Funder

Chinese Government Scholarship

Coordenaçáo de Aperfeiçoamento de Pessoal de Nível Superior

Fundaçáo de Amparo á Pesquisa do Estado de São Paulo

Feldbausch Stiftung of the University of Mainz

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3