The role of the yolk syncytial layer in germ layer patterning in zebrafish

Author:

Chen S.1,Kimelman D.1

Affiliation:

1. Department of Biochemistry and Center for Developmental Biology, Box 357350, University of Washington, Seattle, WA 98195-7350, USA.

Abstract

Formation of the three germ layers requires a series of inductive events during early embryogenesis. Studies in zebrafish indicate that the source of these inductive signals may be the extra-embryonic yolk syncytial layer (YSL). The characterization of genes encoding the nodal-related factor, Squint, and homeodomain protein, Bozozok, both of which are expressed in the YSL, suggested that the YSL has a role in mesendoderm induction. However, these genes, and a second nodal-related factor, cyclops, are also expressed in the overlying marginal blastomeres, raising the possibility that the marginal blastomeres can induce mesendodermal genes independently of the YSL. We have developed a novel technique to study signaling from the YSL in which we specifically eliminate RNAs in the YSL, thus addressing the in vivo requirement of RNA-derived signals from this region in mesendoderm induction. We show that injection of RNase into the yolk cell after the 1K cell stage (3 hours) effectively eliminates YSL transcripts without affecting ubiquitously expressed genes in the blastoderm. We also present data that indicate the stability of existing proteins in the YSL is unaffected by RNase injection. Using this technique, we show that RNA in the YSL is required for the formation of ventrolateral mesendoderm and induction of the nodal-related genes in the ventrolateral marginal blastomeres, revealing the presence of an unidentified inducing signal released from the YSL. We also demonstrate that the dorsal mesoderm can be induced independently of signals from the YSL and present evidence that this is due to the stabilization of (β)-catenin in the dorsal marginal blastomeres. Our results demonstrate that germ layer formation and patterning in zebrafish uses a combination of YSL-dependent and -independent inductive events.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3