Progressive restriction in fate potential by neural progenitors during cerebral cortical development

Author:

Desai A.R.1,McConnell S.K.1

Affiliation:

1. Department of Biological Sciences, Stanford University, Stanford, California 94305, USA. suemcc@stanford.edu

Abstract

During early stages of cerebral cortical development, progenitor cells in the ventricular zone are multipotent, producing neurons of many layers over successive cell divisions. The laminar fate of their progeny depends on environmental cues to which the cells respond prior to mitosis. By the end of neurogenesis, however, progenitors are lineally committed to producing upper-layer neurons. Here we assess the laminar fate potential of progenitors at a middle stage of cortical development. The progenitors of layer 4 neurons were first transplanted into older brains in which layer 2/3 was being generated. The transplanted neurons adopted a laminar fate appropriate for the new environment (layer 2/3), revealing that layer 4 progenitors are multipotent. Mid-stage progenitors were then transplanted into a younger environment, in which layer 6 neurons were being generated. The transplanted neurons bypassed layer 6, revealing that layer 4 progenitors have a restricted fate potential and are incompetent to respond to environmental cues that trigger layer 6 production. Instead, the transplanted cells migrated to layer 4, the position typical of their origin, and also to layer 5, a position appropriate for neither the host nor the donor environment. Because layer 5 neurogenesis is complete by the stage that progenitors were removed for transplantation, restrictions in laminar fate potential must lag behind the final production of a cortical layer. These results suggest that a combination of intrinsic and environmental cues controls the competence of cortical progenitor cells to produce neurons of different layers.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3