Transcriptional Control of Neocortical Size and Microcephaly

Author:

Barão Soraia,Xu Yijun,Vistein Rachel,Goff Loyal,Nielsen Kristina,Bae Byoung-Il,Smith Richard S.,Walsh Christopher A.ORCID,Stein-O’Brien Genevieve,Müller Ulrich

Abstract

AbstractThe mammalian neocortex differs vastly in size and complexity between mammalian species, yet the mechanisms that lead to an increase in brain size during evolution are not known. We show here that two transcription factors coordinate gene expression programs in progenitor cells of the neocortex to regulate their proliferative capacity and neuronal output in order to determine brain size. Comparative studies in mice, ferrets and macaques demonstrate an evolutionary conserved function for these transcription factors to regulate progenitor behaviors across the mammalian clade. Strikingly, the two transcriptional regulators control the expression of large numbers of genes linked to microcephaly suggesting that transcriptional deregulation as an important determinant of the molecular pathogenesis of microcephaly, which is consistent with the finding that genetic manipulation of the two transcription factors leads to severe microcephaly.SummaryThe neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species1,2. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors2–5and the emergence of indirect neurogenesis6during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological and psychiatric disorders remain largely unknown. Here we show that the transcription factors BRN1 (POU3F3) and BRN2 (POU3F2) act as master regulators of the transcriptional programs in progenitors linked to neuronal specification and neocortex expansion. Using genetically modified lissencephalic and gyrencephalic animals, we found that BRN1/2 establish transcriptional programs in neocortical progenitors that control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in genetically modified mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus establish a mechanistic link between BRN1/2 and genes linked to microcephaly and demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3