Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming

Author:

Zhang Yu1,Li Wenlin1,Laurent Timothy1,Ding Sheng1

Affiliation:

1. Gladstone Institute of Cardiovascular Disease, Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA

Abstract

SummaryDespite the great potential of stem cells for basic research and clinical applications, obstacles – such as their scarce availability and difficulty in controlling their fate – need to be addressed to fully realize their potential. Recent achievements of cellular reprogramming have enabled the generation of induced pluripotent stem cells (iPSCs) or other lineage-committed cells from more accessible and abundant somatic cell types by defined genetic factors. However, serious concerns remain about the efficiency and safety of current genetic approaches to cell reprogramming and traditional culture systems that are used for stem cell maintenance. As a complementary approach, small molecules that target specific signaling pathways, epigenetic processes and other cellular processes offer powerful tools for manipulating cell fate to a desired outcome. A growing number of small molecules have been identified to maintain the self-renewal potential of stem cells, to induce lineage differentiation and to facilitate reprogramming by increasing the efficiency of reprogramming or by replacing genetic reprogramming factors. Furthermore, mechanistic investigations of the effects of these chemicals also provide new biological insights. Here, we examine recent achievements in the maintenance of stem cells, including pluripotent and lineage-specific stem cells, and in the control of cell fate conversions, including iPSC reprogramming, conversion of primed to naïve pluripotency, and transdifferentiation, with an emphasis on manipulation with small molecules.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3