Balanced mitochondrial function at low temperature is linked to cold adaptation inDrosophilaspecies

Author:

Jørgensen Lisa Bjerregaard1ORCID,Hansen Andrea Milena1,Willot Quentin1ORCID,Overgaard Johannes1ORCID

Affiliation:

1. Aarhus University Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark

Abstract

ABSTRACTThe ability of ectothermic animals to live in different thermal environments is closely associated with their capacity to maintain physiological homeostasis across diurnal and seasonal temperature fluctuations. For chill-susceptible insects, such as Drosophila, cold tolerance is tightly linked to ion and water homeostasis obtained through a regulated balance of active and passive transport. Active transport at low temperature requires a constant delivery of ATP and we therefore hypothesize that cold-adapted Drosophila are characterized by superior mitochondrial capacity at low temperature relative to cold-sensitive species. To address this, we investigated how experimental temperatures from 1 to 19°C affected mitochondrial substrate oxidation in flight muscle of seven Drosophila species and compared it with a measure of species cold tolerance (CTmin, the temperature inducing cold coma). Mitochondrial oxygen consumption rates measured using a substrate–uncoupler–inhibitor titration (SUIT) protocol showed that cooling generally reduced oxygen consumption of the electron transport system across species, as was expected given thermodynamic effects. Complex I respiration is the primary consumer of oxygen at non-stressful temperatures, but low temperature decreases complex I respiration to a much greater extent in cold-sensitive species than in cold-adapted species. Accordingly, cold-induced reduction of complex I respiration correlates strongly with CTmin. The relative contribution of other substrates (proline, succinate and glycerol 3-phosphate) increased as temperature decreased, particularly in the cold-sensitive species. At present, it is unclear whether the oxidation of alternative substrates can be used to offset the effects of the temperature-sensitive complex I, and the potential functional consequences of such a substrate switch are discussed.

Funder

The Danish Council for Independent Research - Natural Sciences

European Union

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3