Central nervous shutdown underlies acute cold tolerance in tropical and temperate Drosophila species

Author:

Andersen Mads Kuhlmann1ORCID,Jensen Nikolaj Johannes Skole1,Robertson R. Meldrum2,Overgaard Johannes1

Affiliation:

1. Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark

2. Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada

Abstract

When cooled, insects first lose their ability to perform coordinated movements (CTmin) after which they enter chill coma (chill coma onset, CCO). Both these behaviours are popular measures of cold tolerance that correlate remarkably well with species distribution. To identify and understand the neuromuscular impairment that causes CTmin and CCO we used inter- and intraspecific model systems of Drosophila species that have varying cold tolerance as a consequence of adaptation or cold acclimation. Our results demonstrate that CTmin and CCO correlate strongly with a spreading depolarization (SD) within the central nervous system (CNS). We show that this SD is associated with a rapid increase in extracellular [K+] within the CNS causing neuronal depolarization that silences the CNS. The CNS shutdown is likely caused by a mismatch between passive and active ion transport within the CNS and in a different set of experiments we examine inter- and intraspecific differences in sensitivity to SD events during anoxic exposure. These experiments show that cold adapted or acclimated flies are better able to maintain ionoregulatory balance when active transport is compromised within the CNS. Combined, we demonstrate that a key mechanism underlying chill coma entry of Drosophila is CNS shutdown, and the ability to prevent this CNS shutdown is therefore an important component of acute cold tolerance, thermal adaptation and cold acclimation in insects.

Funder

Natur og Univers, Det Frie Forskningsråd

Company of Biologists Travel Fellowship

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3