Ammonia excretion and acid-base regulation in the American horseshoe crab, Limulus polyphemus

Author:

Hans Stephanie1,Quijada-Rodriguez Alex R.1,Allen Garett J. P.1,Onken Horst2,Treberg Jason R.13,Weihrauch Dirk1ORCID

Affiliation:

1. Department of Biological Sciences, University of Manitoba, Winnipeg, Canada

2. Department of Biological Sciences, Wagner College, New York, USA

3. Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada

Abstract

Many studies have investigated ammonia excretion and acid-base regulation in aquatic arthropods, yet current knowledge of marine chelicerates is non-existent. In American horseshoe crabs (Limulus polyphemus), book gills bear physiologically distinct regions: dorsal and ventral half-lamellae, and central mitochondria-rich (CMRA) and peripheral mitochondria-poor areas (PMPA). CMRA and ventral half-lamella exhibited characteristics important to ammonia excretion and/or acid-base regulation as supported by high expression levels of Rhesus-protein 1 (LpRh-1), cytoplasmic carbonic anhydrase (CA-2), and hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN) compared to PMPA and dorsal half-lamella. The half-lamellae displayed remarkable differences; the ventral epithelium was ion-leaky whilst the dorsal counterpart possessed an exceptionally tight epithelium. LpRh-1 was more abundant than LpRh-2 in all investigated tissues, but LpRh-2 was more prevalent in the PMPA than CMRA. Ammonia influx associated with high ambient ammonia (HAA) treatment was counteracted by intact animals and complemented by upregulation of branchial CA-2, V-type H+-ATPase (HAT), HCN, and LpRh-1 mRNA expression. The dorsal epithelium demonstrated characteristics of active ammonia excretion, however, an influx was observed across the ventral epithelium due to the tissue's high ion conductance, although the influx rate was not proportionately high considering the ∼3-fold inwardly-directed ammonia gradient. Novel findings suggest a role for the coxal gland in excretion and maintaining hemolymph ammonia regulation under HAA. Hypercapnic exposure induced compensatory respiratory acidosis and partial metabolic depression. Functional differences between 2 halves of a branchial lamella may be physiologically beneficial in reducing backflow of waste products into adjacent lamellae, especially in fluctuating environments where ammonia levels can increase.

Funder

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3