Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration

Author:

Wang Ya-Zhou12,Yamagami Takashi12,Gan Qini12,Wang Yongping12,Zhao Tianyu12,Hamad Salaheddin3,Lott Paul4,Schnittke Nikolai5,Schwob James E.5,Zhou Chengji J.1234

Affiliation:

1. Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA

2. Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, 2425 Stockton Blvd, Room-602B, Sacramento, CA 95817, USA

3. Graduate Group in Comparative Pathology, University of California, Davis, CA 95616, USA

4. Genetics Graduate Group, University of California, Davis, CA 95616, USA

5. Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, USA

Abstract

The mammalian olfactory epithelium (OE) has a unique stem cell or progenitor niche, which is responsible for the constant peripheral neurogenesis throughout the lifespan of the animal. However, neither the signals that regulate the behavior of these cells nor the lineage properties of the OE stem cells are well understood. Multiple Wnt signaling components exhibit dynamic expression patterns in the developing OE. We generated Wnt signaling reporter TOPeGFP transgenic mice and found TOPeGFP activation predominantly in proliferating Sox2+ OE basal cells during early postnatal development. FACS-isolated TOPeGFP+ OE basal cells are required, but are not sufficient, for formation of spheres. Wnt3a significantly promotes the proliferation of the Sox2+ OE sphere cells. Wnt-stimulated OE sphere cells maintain their multipotency and can differentiate into most types of neuronal and non-neuronal epithelial cells. Also, Wnt activators shift the production of differentiated cells toward olfactory sensory neurons. Moreover, TOPeGFP+ cells are robustly increased in the adult OE after injury. In vivo administration of Wnt modulators significantly alters the regeneration potential. This study demonstrates the role of the canonical Wnt signaling pathway in the regulation of OE stem cells or progenitors during development and regeneration.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3