ß-Catenin signaling regulates temporally discrete phases of anterior taste bud development

Author:

Thirumangalathu Shoba12,Barlow Linda A.123

Affiliation:

1. Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA

2. Rocky Mountain Taste and Smell Center, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA

3. Graduate Program in Cell Biology, Stem Cells and Development, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA

Abstract

The sense of taste is mediated by multicellular taste buds located within taste papillae on the tongue. In mice, individual taste buds reside in fungiform papillae, which develop at mid-gestation as epithelial placodes in the anterior tongue. Taste placodes comprise taste bud precursor cells, which express the secreted factor Sonic hedgehog (Shh), and give rise to taste bud cells that differentiate around birth. We showed previously that epithelial activation of β-catenin is the primary inductive signal for taste placode formation, followed by taste papilla morphogenesis and taste bud differentiation, but the degree to which these later elements were direct or indirect consequences of ß-catenin signaling was not explored. Here we define discrete temporospatial functions of β-catenin in fungiform taste bud development. Specifically we show that early epithelial activation of ß-catenin, before taste placodes form, diverts lingual epithelial cells from a taste bud fate. By contrast, ß-catenin activation a day later within Shh+ placodes, expands taste bud precursors directly, but enlarges papillae indirectly. Further, placodal activation of ß-catenin drives precocious differentiation of Type I glial-like taste cells, but not other taste cell types. Later activation of β-catenin within Shh+ precursors during papilla morphogenesis also expands taste bud precursors and accelerates Type I cell differentiation, but papilla size is no longer enhanced. Finally, although Shh regulates taste placode patterning, we find it is dispensable for the accelerated Type I cell differentiation induced by ß-catenin.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3