Taste papilla cell differentiation requires the regulation of secretory protein production by ALK3-BMP signaling in the tongue mesenchyme

Author:

Ishan Mohamed12,Wang Zhonghou12,Zhao Peng3,Yao Yao12,Stice Steven L.12,Wells Lance3,Mishina Yuji4,Liu Hong-Xiang12ORCID

Affiliation:

1. Regenerative Bioscience Center 1 , Department of Animal and Dairy Science , , Athens, GA 30602 , USA

2. College of Agricultural and Environmental Sciences, University of Georgia 1 , Department of Animal and Dairy Science , , Athens, GA 30602 , USA

3. Complex Carbohydrate Research Center, University of Georgia 2 , Athens, GA 30602 , USA

4. School of Dentistry, University of Michigan 3 Department of Biologic and Materials Sciences , , Ann Arbor, MI 48109 , USA

Abstract

ABSTRACT Taste papillae are specialized organs, each of which comprises an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during early taste papilla development in mouse embryos, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for epithelial Wnt/β-catenin activity and taste papilla differentiation. Mesenchyme-specific knockout (cKO) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.0. Biochemical and cell differentiation analyses demonstrated that mesenchymal ALK3-BMP signaling governed the production of previously unappreciated secretory proteins, i.e. it suppressed those that inhibit and facilitated those that promote taste papilla differentiation. Bulk RNA-sequencing analysis revealed many more differentially expressed genes (DEGs) in the tongue epithelium than in the mesenchyme in Alk3 cKO versus control. Moreover, we detected downregulated epithelial Wnt/β-catenin signaling and found that taste papilla development in the Alk3 cKO was rescued by the GSK3β inhibitor LiCl, but not by Wnt3a. Our findings demonstrate for the first time the requirement of tongue mesenchyme in taste papilla cell differentiation.

Funder

National Institute on Deafness and Other Communication Disorders

National Institutes of Health

University of Georgia

National Institute of Dental and Craniofacial Research

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3