Molecular traffic through plasma membrane disruptions of cells in vivo

Author:

McNeil P.L.1,Ito S.1

Affiliation:

1. Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115.

Abstract

We have recently shown that mechanical forces, experimentally imposed or physiologically generated, transiently disrupt or wound the plasma membranes of epithelial cells of the gut and that cultured endothelial cells similarly wounded mechanically at their plasma membranes release a potent basic fibroblast growth factor-like molecule. Here we show that mechanical forces generated by experimental manipulation (tape stripping and needle puncture), or by animal locomotion, transiently wound the plasma membranes of various cells of skin, allowing otherwise impermeant tracer molecules to enter and become trapped within cell cytoplasm. We estimate that the epidermis of digits from actively locomoting animals is composed of 10.5% (+/− 4.9% S.D.) wounded cells, and that from quiescent animals has 3.7% (+/− 2.5%) wounded cells. Wounded fibroblast, glandular and endothelial cells were also identified in mechanically stressed skin. Cells retaining fluorescein dextran, used as a label for wounding, were observed 24h after the imposition of mechanical force, and wounded cells were generally of normal ultrastructure, indicating that cells in skin can survive membrane wounding. We propose that plasma membrane disruptions are an overlooked but probably common occurrence in cells residing in tissues such as gut and skin that are normally exposed to mechanical stress in vivo, and that such disruptions provide the physical basis in vivo for a previously unrecognized and diffusion-mediated route for molecular traffic directly across the plasma membrane into and out of living cell cytoplasm.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3