Author:
Mularski Anna,Sønder Stine Lauritzen,Heitmann Anne Sofie Busk,Pandey Mayank Prakash,Khandelia Himanshu,Nylandsted Jesper,Simonsen Adam Cohen
Abstract
AbstractEfficient plasma membrane repair (PMR) is required to repair damage sustained in the cellular life cycle. The annexin family of proteins, involved in PMR, are activated by Ca2+ influx from extracellular media at the site of injury. Mechanistic studies of the annexins have been overwhelmingly performed using a single annexin, despite the recruitment of multiple annexins to membrane damage sites in living cells. Hence, we investigate the effect of the presence of the crosslinking annexins, annexin A1, A2 and A6 (ANXA1, ANXA2 and ANXA6) on the membrane curvature induction of annexin A4 (ANXA4) in model membrane systems. Our data support a mechanistic model of PMR where ANXA4 induced membrane curvature and ANXA6 crosslinking promotes wound closure. The model now can be expanded to include ANXA1 and ANXA2 as specialist free edge membrane crosslinkers that act in concert with ANXA4 induced curvature and ANXA6 crosslinking.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Lauritzen, S. P., Boye, T. L. & Nylandsted, J. Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin. Cell Dev. Biol. 45, 32–38 (2015).
2. McNeil, P. L. & Khakee, R. Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am. J. Pathol. 140, 1097–1109 (1992).
3. McNeil, P. L. & Ito, S. Molecular traffic through plasma membrane disruptions of cells in vivo. J. Cell Sci. 96, 549 (1990).
4. Yu, Q. C. & McNeil, P. L. Transient disruptions of aortic endothelial cell plasma membranes. Am. J. Pathol. 141, 1349–1360 (1992).
5. McNeil, P. L. & Ito, S. Gastrointestinal cell plasma membrane wounding and resealing in vivo. Gastroenterology 96, 1238–1248 (1989).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献