Affiliation:
1. Veterinary Preclinical Sciences and School of Biological Sciences, University of Liverpool, Liverpool L69 3BX, UK. jsgibson@sghms.ac.uk
Abstract
Oxygen is essential for all higher forms of animal life. It is required for oxidative phosphorylation, which forms the bulk of the energy supply of most animals. In many vertebrates, transport of O(2) from respiratory to other tissues, and of CO(2) in the opposite direction, involves red cells. These are highly specialised, adapted for their respiratory function. Intracellular haemoglobin, carbonic anhydrase and the membrane anion exchanger (AE1) increase the effective O(2)- and CO(2)-carrying capacity of red cells by approximately 100-fold. O(2) also has a pathological role. It is a very reactive species chemically, and oxidation, free radical generation and peroxide formation can be major hazards. Cells that come into contact with potentially damaging levels of O(2) have a variety of systems to protect them against oxidative damage. Those in red cells include catalase, superoxide dismutase and glutathione. In this review, we focus on a third role of O(2), as a regulator of membrane transport systems, a role with important consequences for the homeostasis of the red cell and also the organism as a whole. We show that regulation of red cell transporters by O(2) is widespread throughout the vertebrate kingdom. The effect of O(2) is selective but involves a wide range of transporters, including inorganic and organic systems, and both electroneutral and conductive pathways. Finally, we discuss what is known about the mechanism of the O(2) effect and comment on its physiological and pathological roles.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献