Affiliation:
1. Integrative Physiology Research Group, School of Biological Science,University of Liverpool, United Kingdom.
Abstract
The volume sensitivity of different K flux pathways has been determined in trout red blood cells subjected to volume perturbation. Gentle hyposmotic swelling induced a K influx in a Cl-containing saline but not in NO3- or methanesulfonate (MeSF)-containing salines, consistent with the activation of a Cl-dependent flux. Extreme hyposmotic swelling led to larger K fluxes in all salines but with reduced anion discrimination of the Cl-dependent flux. In contrast to these graded responses, isosmotic swelling using ammonium chloride or beta-adrenergic stimulation activated only Cl-dependent fluxes in an all-or-none fashion. The relationship between the hyposmotically and isosmotically induced pathways was studied by coactivation using either ammonium chloride or isoproterenol with anisosmotic treatment. Cells in ammonium chloride-containing hyposmotic salines showed no additive K flux over that induced by hyposmotic treatment alone, indicating that the isosmotically induced Cl-dependent flux was identical to the hyposmotically induced Cl-dependent flux. However, cells coactivated by hyposmotic and beta-adrenergic treatment showed a small Cl-dependent flux in addition to that induced by hyposmotic treatment alone. This small third component was unaffected by anisosmotic treatment. We conclude that the major Cl-dependent and Cl-independent K flux pathways are distinct and separate and that the former has an anion dependence that varies with cell volume and a volume sensitivity that varies with ionic strength.
Publisher
American Physiological Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献