Exploring dynamic similarity in human running using simulated reduced gravity

Author:

Donelan J.M.1,Kram R.1

Affiliation:

1. Integrative Biology Department, University of California, Berkeley, CA 94720-3140, USA. mdonelan@uclink4.berkeley.edu

Abstract

The Froude number (a ratio of inertial to gravitational forces) predicts the occurrence of dynamic similarity in legged animals over a wide range of sizes and velocities for both walking and running gaits at Earth gravity. This is puzzling because the Froude number ignores elastic forces that are crucial for understanding running gaits. We used simulated reduced gravity as a tool for exploring dynamic similarity in human running. We simulated reduced gravity by applying a nearly constant upward force to the torsos of our subjects while they ran on a treadmill. We found that at equal Froude numbers, achieved through different combinations of velocity and levels of gravity, our subjects did not run in a dynamically similar manner. Thus, the inertial and gravitational forces that comprise the Froude number were not sufficient to characterize running in reduced gravity. Further, two dimensionless numbers that incorporate elastic forces, the Groucho number and the vertical Strouhal number, also failed to predict dynamic similarity in reduced-gravity running. To better understand the separate effects of velocity and gravity, we also studied running mechanics at fixed absolute velocities under different levels of gravity. The effects of velocity and gravity on the requirements of dynamic similarity differed in both magnitude and direction, indicating that there are no two velocity and gravity combinations at which humans will prefer to run in a dynamically similar manner. A comparison of walking and running results demonstrated that reduced gravity had different effects on the mechanics of each gait. This suggests that a single unifying hypothesis for the effects of size, velocity and gravity on both walking and running gaits will not be successful.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference32 articles.

1. Optimization and gaits in the locomotion of vertebrates;Alexander;Physiol. Rev,1989

2. How dinosaurs ran.;Alexander;Scient. Am.,1991

3. Fourier analysis of forces exerted in walking and running;Alexander;J. Biomech,1980

4. The spring-mass model for running and hopping;Blickhan;J. Biomech,1989

5. Force platforms as ergometers;Cavagna;J. Appl. Physiol,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3