Human muscle activity and lower limb biomechanics of overground walking at varying levels of simulated reduced gravity and gait speeds

Author:

MacLean Mhairi K.,Ferris Daniel P.ORCID

Abstract

Reducing the mechanical load on the human body through simulated reduced gravity can reveal important insight into locomotion biomechanics. The purpose of this study was to quantify the effects of simulated reduced gravity on muscle activation levels and lower limb biomechanics across a range of overground walking speeds. Our overall hypothesis was that muscle activation amplitudes would not decrease proportionally to gravity level. We recruited 12 participants (6 female, 6 male) to walk overground at 1.0, 0.76, 0.55, and 0.31 G for four speeds: 0.4, 0.8, 1.2, and 1.6 ms-1. We found that peak ground reaction forces, peak knee extension moment in early stance, peak hip flexion moment, and peak ankle extension moment all decreased substantially with reduced gravity. The peak knee extension moment at late stance/early swing did not change with gravity. The effect of gravity on muscle activity amplitude varied considerably with muscle and speed, often varying nonlinearly with gravity level. Quadriceps (rectus femoris, vastus lateralis, & vastus medialis) and medial gastrocnemius activity decreased in stance phase with reduced gravity. Soleus and lateral gastrocnemius activity had no statistical differences with gravity level. Tibialis anterior and biceps femoris increased with simulated reduced gravity in swing and stance phase, respectively. The uncoupled relationship between simulated gravity level and muscle activity have important implications for understanding biomechanical muscle functions during human walking and for the use of bodyweight support for gait rehabilitation after injury.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3