Mitochondrial function in flying honeybees (Apis mellifera): respiratory chain enzymes and electron flow from complex III to oxygen

Author:

Suarez R.K.1,Staples J.F.1,Lighton J.R.1,Mathieu-Costello O.1

Affiliation:

1. Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA. suarez@lifesci.ucsb.edu

Abstract

The biochemical bases for the high mass-specific metabolic rates of flying insects remain poorly understood. To gain insights into mitochondrial function during flight, metabolic rates of individual flying honeybees were measured using respirometry, and their thoracic muscles were fixed for electron microscopy. Mitochondrial volume densities and cristae surface densities, combined with biochemical data concerning cytochrome content per unit mass, were used to estimate respiratory chain enzyme densities per unit cristae surface area. Despite the high content of respiratory enzymes per unit muscle mass, these are accommodated by abundant mitochondria and high cristae surface densities such that enzyme densities per unit cristae surface area are similar to those found in mammalian muscle and liver. These results support the idea that a unit area of mitochondrial inner membrane constitutes an invariant structural unit. Rates of O(2) consumption per unit cristae surface area are much higher than those estimated in mammals as a consequence of higher enzyme turnover rates (electron transfer rates per enzyme molecule) during flight. Cytochrome c oxidase, in particular, operates close to its maximum catalytic capacity (k(cat)). Thus, high flux rates are achieved via (i) high respiratory enzyme content per unit muscle mass and (ii) the operation of these enzymes at high fractional velocities.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3