Affiliation:
1. Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA. suarez@lifesci.ucsb.edu
Abstract
The biochemical bases for the high mass-specific metabolic rates of flying insects remain poorly understood. To gain insights into mitochondrial function during flight, metabolic rates of individual flying honeybees were measured using respirometry, and their thoracic muscles were fixed for electron microscopy. Mitochondrial volume densities and cristae surface densities, combined with biochemical data concerning cytochrome content per unit mass, were used to estimate respiratory chain enzyme densities per unit cristae surface area. Despite the high content of respiratory enzymes per unit muscle mass, these are accommodated by abundant mitochondria and high cristae surface densities such that enzyme densities per unit cristae surface area are similar to those found in mammalian muscle and liver. These results support the idea that a unit area of mitochondrial inner membrane constitutes an invariant structural unit. Rates of O(2) consumption per unit cristae surface area are much higher than those estimated in mammals as a consequence of higher enzyme turnover rates (electron transfer rates per enzyme molecule) during flight. Cytochrome c oxidase, in particular, operates close to its maximum catalytic capacity (k(cat)). Thus, high flux rates are achieved via (i) high respiratory enzyme content per unit muscle mass and (ii) the operation of these enzymes at high fractional velocities.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献