Optimum take-off techniques and muscle design for long jump

Author:

Seyfarth A.1,Blickhan R.1,Van Leeuwen J.L.1

Affiliation:

1. Institute for Sport Science, LSB Biomechanik, Friedrich-Schiller-University, Seidelstrasse 20, D-07749 Jena, Germany.

Abstract

A two-segment model based on Alexander (1990; Phil. Trans. R. Soc. Lond. B 329, 3–10) was used to investigate the action of knee extensor muscles during long jumps. A more realistic representation of the muscle and tendon properties than implemented previously was necessary to demonstrate the advantages of eccentric force enhancement and non-linear tendon properties. During the take-off phase of the long jump, highly stretched leg extensor muscles are able to generate the required vertical momentum. Thereby, serially arranged elastic structures may increase the duration of muscle lengthening and dissipative operation, resulting in an enhanced force generation of the muscle-tendon complex. To obtain maximum performance, athletes run at maximum speed and have a net loss in mechanical energy during the take-off phase. The positive work done by the concentrically operating muscle is clearly less than the work done by the surrounding system on the muscle during the eccentric phase. Jumping performance was insensitive to changes in tendon compliance and muscle speed, but was greatly influenced by muscle strength and eccentric force enhancement. In agreement with a variety of experimental jumping performances, the optimal jumping technique (angle of attack) was insensitive to the approach speed and to muscle properties (muscle mass, the ratio of muscle fibre to tendon cross-sectional area, relative length of fibres and tendon). The muscle properties also restrict the predicted range of the angle of the velocity vector at take-off.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference18 articles.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3