Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes

Author:

Gintof Chris1,Konow Nicolai1,Ross Callum F.2,Sanford Christopher P. J.1

Affiliation:

1. Department of Biology, Hofstra University, Hempstead, NY 11549, USA

2. Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57th Street, Chicago, IL 60637, USA

Abstract

SUMMARYIntra-oral prey processing (chewing) using the mandibular jaws occurs more extensively among teleost fishes than previously documented. The lack of muscle spindles, γ-motoneurons and periodontal afferents in fishes makes them useful for testing hypotheses regarding the relationship between these sensorimotor components and rhythmic chewing in vertebrates. Electromyography (EMG) data from the adductor mandibulae (AM) were used to quantify variation in chew cycle duration in the bowfin Amia, three osteoglossomorphs (bony-tongues), four salmonids and one esocid (pike). All species chewed prey using their oral jaw in repetitive trains of between 3 and 30 consecutive chews, a pattern that resembles cyclic chewing in amniote vertebrates. Variance in rhythmicity was compared within and between lineages using coefficients of variation and Levene's test for homogeneity of variance. These comparisons revealed that some teleosts exhibit degrees of rhythmicity that are comparable to mammalian mastication and higher than in lepidosaurs. Moreover, chew cycle durations in fishes, as in mammals, scale positively with mandible length. Chewing among basal teleosts may be rhythmic because it is stereotyped and inflexible, the result of patterned interactions between sensory feedback and a central pattern generator, because the lack of a fleshy tongue renders jaw–tongue coordination unnecessary and/or because stereotyped opening and closing movements are important for controlling fluid flow in the oral cavity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference43 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Kinematics of Proal Chewing in Rats;Integrative Organismal Biology;2024

2. Rhythmic chew cycles with distinct fast and slow phases are ancestral to gnathostomes;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

3. Do salamanders chew? An X-ray reconstruction of moving morphology analysis of ambystomatid intraoral feeding behaviours;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

4. Introduction: food processing and nutritional assimilation in animals;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

5. Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3