A computational fluid dynamic study of hawkmoth hovering

Author:

Liu H,Ellington C P,Kawachi K,van den Berg C,Willmott A P

Abstract

A computational fluid dynamic (CFD) modelling approach is used to study the unsteady aerodynamics of the flapping wing of a hovering hawkmoth. We use the geometry of a Manduca sexta-based robotic wing to define the shape of a three-dimensional 'virtual' wing model and 'hover' this wing, mimicking accurately the three-dimensional movements of the wing of a hovering hawkmoth. Our CFD analysis has established an overall understanding of the viscous and unsteady flow around the flapping wing and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. <P> A coherent leading-edge vortex with axial flow was detected during translational motions of both the up- and downstrokes. The attached leading-edge vortex causes a negative pressure region and, hence, is responsible for enhancing lift production. The axial flow, which is derived from the spanwise pressure gradient, stabilises the vortex and gives it a characteristic spiral conical shape. <P> The leading-edge vortex created during previous translational motion remains attached during the rotational motions of pronation and supination. This vortex, however, is substantially deformed due to coupling between the translational and rotational motions, develops into a complex structure, and is eventually shed before the subsequent translational motion. <P> Estimation of the forces during one complete flapping cycle shows that lift is produced mainly during the downstroke and the latter half of the upstroke, with little force generated during pronation and supination. The stroke plane angle that satisfies the horizontal force balance of hovering is 23.6 degrees , which shows excellent agreement with observed angles of approximately 20-25 degrees . The time-averaged vertical force is 40 % greater than that needed to support the weight of the hawkmoth.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 216 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3