Morphometric and biochemical characteristics of ventricular hypertrophy in male rainbow trout (Oncorhynchus mykiss).

Author:

Clark R J1,Rodnick K J1

Affiliation:

1. Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA.

Abstract

We examined the morphometric and biochemical effects of ventricular hypertrophy in male rainbow trout (Oncorhynchus mykiss) during sexual maturation. Our investigation focused on characterizing the growth of ventricular layers, on cardiomyocyte dimensions (length, cross-sectional area and cell volume) and on the activities of enzymes involved in intermediary metabolism. Relative ventricle mass (100 x ventricle mass/body mass) increased by as much as 2.4-fold during sexual maturation [as defined by an increasing gonadosomatic index (100 x gonad mass/body mass)], and this resulted in an increased proportion of epicardium relative to endocardium. Ventricular enlargement was associated with increased length (+31 %) and transverse cross-sectional area (+83 %) of cardiomyocytes, which resulted in an expansion of up to 2.2-fold in mean myocyte volume (from 1233 to 2751 micron3). These results indicate that sexual maturation induces ventricular enlargement through myocyte hypertrophy. Cell length and cross-sectional area were similar in both myocardial layers, and myocytes were elliptical rather than circular in transverse cross section. Ventricular hypertrophy did not alter transverse cell shape, perhaps reflecting the maintenance of short diffusion distances for small molecules as cells hypertrophy. Myocyte hypertrophy could not account entirely for the sevenfold range of ventricle masses from different-sized fish, indicating that myocyte hyperplasia contributes substantially to ventricular growth as trout grow. Measurements of the maximal activities of metabolic enzymes demonstrated that ventricular hypertrophy was associated with (1) higher epicardial but not endocardial activities of citrate synthase (by 23 %) and beta-hydroxyacyl-CoA dehydrogenase (by 20 %); (2) lower activities of hexokinase (by 50 %) in both layers, and (3) no change in lactate dehydrogenase or pyruvate kinase activities, which were also similar between layers. These results suggest that the energetic needs of the hypertrophied trout ventricle may be met through increased reliance on fatty acid oxidation, particularly by the endocardium, but decreased reliance on glucose as a metabolic fuel in both layers.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3