Compliance of the fish outflow tract is altered by thermal acclimation through connective tissue remodelling

Author:

Keen Adam N.12,Mackrill John J.3ORCID,Gardner Peter4,Shiels Holly A.1ORCID

Affiliation:

1. Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

2. Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK

3. Department of Physiology, University College Cork, Cork, County Cork, Ireland

4. School of Chemical Engineering and Analytical Science, Manchester Institute of Biotechnology, University of Manchester, UK

Abstract

To protect the gill capillaries from high systolic pulse pressure, the fish heart contains a compliant non-contractile chamber called the bulbus arteriosus which is part of the outflow tract (OFT) which extends from the ventricle to the ventral aorta. Thermal acclimation alters the form and function of the fish atria and ventricle to ensure appropriate cardiac output at different temperatures, but its impact on the OFT is unknown. Here we used ex vivo pressure–volume curves to demonstrate remodelling of passive stiffness in the rainbow trout ( Oncorhynchus mykiss ) bulbus arteriosus following more than eight weeks of thermal acclimation to 5, 10 and 18°C. We then combined novel, non-biased Fourier transform infrared spectroscopy with classic histological staining to show that changes in compliance were achieved by changes in tissue collagen-to-elastin ratio. In situ gelatin zymography and SDS-PAGE zymography revealed that collagen remodelling was underpinned, at least in part, by changes in activity and abundance of collagen degrading matrix metalloproteinases. Collectively, we provide the first indication of bulbus arteriosus thermal remodelling in a fish and suggest this remodelling ensures optimal blood flow and blood pressure in the OFT during temperature change.

Funder

BBSRC

Leverhulme Trust

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3