An essential role for LPA signalling in telencephalon development

Author:

Geach Timothy J.1,Faas Laura2,Devader Christelle1,Gonzalez-Cordero Anai13,Tabler Jacqueline M.14,Brunsdon Hannah2,Isaacs Harry V.2,Dale Leslie1

Affiliation:

1. Department of Cell and Developmental Biology, University College London, Anatomy Building, Gower Street, London, WC1E 6BT, UK.

2. Area 11, Department of Biology, University of York, Heslington, York, YO10 5DD, UK.

3. Department of Genetics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.

4. Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA.

Abstract

Lysophosphatidic acid (LPA) has wide-ranging effects on many different cell types, acting through G-protein-coupled receptors such as LPAR6. We show that Xenopus lpar6 is expressed from late blastulae and is enriched in the mesoderm and dorsal ectoderm of early gastrulae. Expression in gastrulae is an early response to FGF signalling. Transcripts for lpar6 are enriched in the neural plate of Xenopus neurulae and loss of function caused forebrain defects, with reduced expression of telencephalic markers (foxg1, emx1 and nkx2-1). Midbrain (en2) and hindbrain (egr2) markers were unaffected. Foxg1 expression requires LPAR6 within ectoderm and not mesoderm. Head defects caused by LPAR6 loss of function were enhanced by co-inhibiting FGF signalling, with defects extending into the hindbrain (en2 and egr2 expression reduced). This is more severe than expected from simple summation of individual defects, suggesting that LPAR6 and FGF have overlapping or partially redundant functions in the anterior neural plate. We observed similar defects in forebrain development in loss-of-function experiments for ENPP2, an enzyme involved in the synthesis of extracellular LPA. Our study demonstrates a role for LPA in early forebrain development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3