Terrestrial force production by the limbs of a semi-aquatic salamander provides insight into the evolution of terrestrial locomotor mechanics

Author:

Kawano Sandy M.1ORCID,Blob Richard W.2ORCID

Affiliation:

1. Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA

2. Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA

Abstract

ABSTRACT Amphibious fishes and salamanders are valuable functional analogs for vertebrates that spanned the water–land transition. However, investigations of walking mechanics have focused on terrestrial salamanders and, thus, may better reflect the capabilities of stem tetrapods that were already terrestrial. The earliest tetrapods were likely aquatic, so salamanders that are not primarily terrestrial may yield more appropriate data for modeling the incipient stages of terrestrial locomotion. In the present study, locomotor biomechanics were quantified from semi-aquatic Pleurodeles waltl, a salamander that spends most of its adult life in water, and then compared with those of a primarily terrestrial salamander (Ambystoma tigrinum) and a semi-aquatic fish (Periophthalmus barbarus) to evaluate whether terrestrial locomotion was more comparable between species with ecological versus phylogenetic similarities. Ground reaction forces (GRFs) from individual limbs or fins indicated that the pectoral appendages of each taxon had distinct patterns of force production, but GRFs from the hindlimbs were comparable between the salamander species. The rate at which force is produced can affect musculoskeletal function, so we also calculated ‘yank’ (first time derivative of force) to quantify the dynamics of GRF production. Yank was sometimes slower in P. waltl but there were some similarities between the three species. Finally, the semi-aquatic taxa (P. waltl and P. barbarus) had a more medial inclination of the GRF compared to terrestrial salamanders, potentially elevating bone stresses among more aquatic taxa and limiting their excursions onto land.

Funder

American Society for Ichthyologists and Herpetologists

Sigma Xi

Society for Vertebrate Paleontology

Clemson University

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3