Molecular mechanisms for intestinal HCO3− secretion and its regulation by guanylin in seawater-acclimated eels

Author:

Takei Yoshio1ORCID,Wong Marty K. S.1,Ando Masaaki1ORCID

Affiliation:

1. Laboratory of Physiology, Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba 277-8564, Japan

Abstract

The intestine of marine teleosts secretes HCO3− into the lumen and precipitates Ca2+ and Mg2+ in the imbibed seawater as carbonates to decrease luminal fluid osmolality and facilitate water absorption. However, hormonal regulation of HCO3−secretion is largely unknown. Here, mucosally-added guanylin (GN) increased HCO3− secretion, measured by pH-stat, across isolated seawater-acclimated eel intestine bathed in saline at pH 7.4 (5% CO2). The effect of GN on HCO3− secretion was slower than that on the short-circuit current, and the time-course of the GN effect was similar to that of bumetanide. Mucosal bumetanide and serosal 4,4’-dinitrostilbene-2,2’-disulfonic acid (DNDS) inhibited the GN effect, suggesting an involvement of apical Na+-K+-2Cl− cotransporter (NKCC2) and basolateral Cl−/HCO3− exchanger (AE)/Na+-HCO3− cotransporter (NBC) in the GN effect. As mucosal DNDS failed to inhibit the GN effect, apical DNDS-sensitive AE may not be involved. To identify molecular species of transporters involved in the GN effect, we performed RNA-seq analyses followed by quantitative real-time PCR after transfer of eels to seawater. Among the genes upregulated after seawater transfer, AE genes, draa, b, and pat1a, c, on the apical membrane, and NBC genes, nbce1a, n1, n2a, and a AE gene, sat-1, on the basolateral membrane were candidates involved in HCO3− secretion. Judging from the slow effect of GN, we suggest that GN inhibits NKCC2b on the apical membrane and decreases cytosolic Cl− and Na+, which then activates apical DNDS-insensitive DRAs and basolateral DNDS-sensitive NBCs to enhance transcellular HCO3− flux across the intestinal epithelia of seawater-acclimated eels.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3