Antisera against a channel-forming 16 kDa protein inhibit dye-coupling and bind to cell membranes in Drosophila ovarian follicles

Author:

Bohrmann J.1

Affiliation:

1. Institut fur Biologie I (Zoologie), Universitat Freiburg, Germany.

Abstract

In Drosophila ovarian follicles, communication via gap junctions can be observed between the oocyte and its surrounding follicular epithelium. In the present study, the intercellular exchange of the fluorescent tracer Lucifer Yellow was analysed following pressure-injections of five different sera or protein solutions into the oocyte of stage-10 follicles. Three of the tested sera are directed against a channel-forming 16 kDa protein, which is a component of the vacuolar H(+)-ATPase and of Nephrops norvegicus gap junctions. When one of these antisera was injected 5–10 min prior to the dye, the percentage of follicles showing dye-coupling between oocyte and follicle cells was extremely small. On the other hand, injections of non-immune serum or of bovine serum albumin solution had only minor inhibitory effects. With indirect immunofluorescence, the three Nephrops antisera revealed a discrete punctate pattern at the membranes between neighbouring follicle cells as well as between follicle cells and oocyte. Most likely, this fluorescent pattern represents the distribution of gap junctions in the follicular epithelium. On immunoblots, the Nephrops antisera recognized a 29 kDa Drosophila ovary protein with high specificity. Affinity purification of one of these antisera against the 29 kDa protein revealed that this protein of Drosophila and the 16 kDa membrane-channel protein of Nephrops are immunologically related. Thus, the Nephrops antisera might help to reveal, in future injection experiments, the functional role of gap-junction mediated communication in Drosophila.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3