Analysing bioelectrical phenomena in the Drosophila ovary with genetic tools: tissue-specific expression of sensors for membrane potential and intracellular pH, and RNAi-knockdown of mechanisms involved in ion exchange

Author:

Schotthöfer Susanne Katharina,Bohrmann JohannesORCID

Abstract

Abstract Background Changes in transcellular bioelectrical patterns are known to play important roles during developmental and regenerative processes. The Drosophila follicular epithelium has proven to be an appropriate model system for studying the mechanisms by which bioelectrical signals emerge and act. Fluorescent indicator dyes in combination with various inhibitors of ion-transport mechanisms have been used to investigate the generation of membrane potentials (Vmem) and intracellular pH (pHi). Both parameters as well as their anteroposterior and dorsoventral gradients were affected by the inhibitors which, in addition, led to alterations of microfilament and microtubule patterns equivalent to those observed during follicle-cell differentiation. Results We expressed two genetically-encoded fluorescent sensors for Vmem and pHi, ArcLight and pHluorin-Moesin, in the follicular epithelium of Drosophila. By means of the respective inhibitors, we obtained comparable effects on Vmem and/or pHi as previously described for Vmem- and pHi-sensitive fluorescent dyes. In a RNAi-knockdown screen, five genes of ion-transport mechanisms and gap-junction subunits were identified exerting influence on ovary development and/or oogenesis. Loss of ovaries or small ovaries were the results of soma knockdowns of the innexins inx1 and inx3, and of the DEG/ENaC family member ripped pocket (rpk). Germline knockdown of rpk also resulted in smaller ovaries. Soma knockdown of the V-ATPase-subunit vha55 caused size-reduced ovaries with degenerating follicles from stage 10A onward. In addition, soma knockdown of the open rectifier K+channel 1 (ork1) resulted in a characteristic round-egg phenotype with altered microfilament and microtubule organisation in the follicular epithelium. Conclusions The genetic tool box of Drosophila provides means for a refined and extended analysis of bioelectrical phenomena. Tissue-specifically expressed Vmem- and pHi-sensors exhibit some practical advantages compared to fluorescent indicator dyes. Their use confirms that the ion-transport mechanisms targeted by inhibitors play important roles in the generation of bioelectrical signals. Moreover, modulation of bioelectrical signals via RNAi-knockdown of genes coding for ion-transport mechanisms and gap-junction subunits exerts influence on crucial processes during ovary development and results in cytoskeletal changes and altered follicle shape. Thus, further evidence amounts for bioelectrical regulation of developmental processes via the control of both signalling pathways and cytoskeletal organisation.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3