The density of small tight junction pores varies among cell types and is increased by expression of claudin-2

Author:

Van Itallie Christina M.1,Holmes Jennifer2,Bridges Arlene3,Gookin Jody L.4,Coccaro Maria R.4,Proctor William3,Colegio Oscar R.5,Anderson James M.2

Affiliation:

1. Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA

2. Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599, USA

3. School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA

4. Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA

5. Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA

Abstract

Epithelial tight junctions contain size- and charge-selective pores that control the paracellular movement of charged and noncharged solutes. Claudins influence the charge selectivity and electrical resistance of junctions, but there is no direct evidence describing pore composition or whether pore size or density differs among cell types. To characterize paracellular pores independent of influences from charge selectivity, we profiled the `apparent permeabilities' (Papp) of a continuous series of noncharged polyethylene glycols (PEGs) across monolayers of five different epithelial cell lines and porcine ileum. We also characterized Papp of high and low electrical resistance MDCK cell monolayers expressing heterologous claudins. Papp profiling confirms that the paracellular barrier to noncharged solutes can be modeled as two distinct pathways: high-capacity small pores and a size-independent pathway allowing flux of larger solutes. All cell lines and ileum share a pore aperture of radius 4 Å. Using Papp of a PEG of radius 3.5 Å to report the relative pore number provides the novel insight that pore density along the junction varies among cell types and is not necessarily related to electrical resistance. Expression of claudin-2 results in a selective increase in pore number but not size and has no effect on the permeability of PEGs that are larger than the pores; however, neither knockdown of claudin-2 nor overexpression of several other claudins altered either the number of small pores or their size. We speculate that permeability of all small solutes is proportional to pore number but that small electrolytes are subject to further selectivity by the profile of claudins expressed, explaining the dissociation between the Papp for noncharged solutes and electrical resistance. Although claudins are likely to be components of the small pores, other factors might regulate pore number.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 332 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3