The Hedgehog-induced Smoothened conformational switch assembles a signaling complex that activates Fused by promoting its dimerization and phosphorylation

Author:

Shi Qing1,Li Shuang1,Jia Jianhang2,Jiang Jin1

Affiliation:

1. Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.

2. Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.

Abstract

Hedgehog (Hh) transduces signal by regulating the subcellular localization and conformational state of the GPCR-like protein Smoothened (Smo) but how Smo relays the signal to cytoplasmic signaling components remains poorly understood. Here, we show that Hh-induced Smo conformational change recruits Costal2 (Cos2)/Fused (Fu) and promotes Fu kinase domain dimerization. We find that induced dimerization through the Fu kinase domain activates Fu by inducing multi-site phosphorylation of its activation loop (AL) and phospho-mimetic mutations of AL activate the Hh pathway. Interestingly, we observe that graded Hh signals progressively increase Fu kinase domain dimerization and AL phosphorylation, suggesting that Hh activates Fu in a dose-dependent manner. Moreover, we find that activated Fu regulates Cubitus interruptus (Ci) by both promoting its transcriptional activator activity and inhibiting its proteolysis into a repressor form. We provide evidence that activated Fu exerts these regulations by interfering with the formation of Ci-Sufu and Ci-Cos2-kinase complexes that normally inhibit Ci activity and promote its processing. Taken together, our results suggest that Hh-induced Smo conformational change facilitates the assembly of active Smo-Cos2-Fu signaling complexes that promote Fu kinase domain dimerization, phosphorylation and activation, and that Fu regulates both the activator and repressor forms of Ci.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3