Plasma-accessible carbonic anhydrase at the tissue of a teleost fish may greatly enhance oxygen delivery:in vitroevidence in rainbow trout,Oncorhynchus mykiss

Author:

Rummer Jodie L.1,Brauner Colin J.1

Affiliation:

1. Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada

Abstract

SUMMARYDuring a generalized acidosis in rainbow trout, catecholamines are released into the blood, activating red blood cell (RBC) Na+/H+ exchange (βNHE), thus protecting RBC intracellular pH (pHi) and subsequent O2 binding at the gill. Because of the presence of a Root effect (a reduction in oxygen carrying capacity of the blood with a reduction in pH), the latter could otherwise be impaired. However, plasma-accessible carbonic anhydrase (CA) at the tissues (and absence at the gills) may result in selective short-circuiting of RBC βNHE pH regulation. This would acidify the RBCs and greatly enhance O2 delivery by exploitation of the combined Bohr-Root effect, a mechanism not previously proposed. As proof-of-principle, an in vitro closed system was developed to continuously monitor extracellular pH (pHe) and O2 tension (PO2) of rainbow trout blood. In this closed system, adding CA to acidified, adrenergically stimulated RBCs short-circuited βNHE pH regulation, resulting in an increase in PO2 by >30 mmHg, depending on the starting Hb-O2 saturation and degree of initial acidification. Interestingly, in the absence of adrenergic stimulation, addition of CA still elevated PO2, albeit to a lesser extent, a response that was absent during general NHE inhibition. If plasma-accessible CA-mediated short-circuiting is operational in vivo, the combined Bohr-Root effect system unique to teleost fishes could markedly enhance tissue O2 delivery far in excess of that in vertebrates possessing a Bohr effect alone and may lead to insights about the early evolution of the Root effect.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3