In vitrodelayed senescence of extirpated buds from zooids of the colonial tunicateBotryllus schlosseri

Author:

Rabinowitz Claudette1,Rinkevich Baruch1

Affiliation:

1. Israel Oceanographic and Limnological Research, National Institute of Oceanography, Tel Shikmona, PO Box 8030, Haifa, Israel

Abstract

SUMMARYIn the colonial growth of botryllid ascidians, blastogenesis (bud formation) is a cyclical and synchronized developmental process characterized by a weekly rhythm of budding and apoptotic events. Very little is known about this cycle regulation and its control. In this study, the in vitrofate of developing buds and regressing zooids extirpated from Botryllus schlosseri colonies at different blastogenic stages were examined,revealing that stages `B' to `D' buds (but not stage `A' buds) developed new structures under in vitro conditions. These were mainly spheres (up to 1 mm in diameter) and epithelial monolayers around the attached buds. We also found that: (1) when attached spheres and epithelial monolayers appeared,the life expectancy of an isolated bud in vitro reached 50–60 days, five times the life expectancy of intact, in vivo developing zooids; (2) the life expectancy of in vitro buds that remained unattached to the substrates was at least 150 days; (3) after attaching to the substrates, buds obeyed a newly imposed developmental clock dictating up to 35 survival days for spheres and up to 14 days for epithelial monolayers; (4) the prevailing mode of death in vitro was necrotic, in contrast to the apoptotic mode of zooidal deterioration at the takeover phase of blastogenesis; (5) under in vitro conditions, degenerating zooids surprisingly produced epithelial monolayers within 3 weeks of culturing. Monolayers survived for up to 10 additional days, extending the lifespan of the degenerating zooids from a few hours to up to 1 month. We conclude that under in vitro conditions, not only are the underlying colonial growth mechanisms replaced by different developmental pathways, but also the internal colonial-level clocks programming death, are replaced by a new biological mechanism with different timetables.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3