Affiliation:
1. Department of Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Japan.
Abstract
Cofilin, an indispensable, actin-regulating protein represents the ‘cofilin family’ of actin-binding proteins existing in a wide variety of organisms. Our previous and other in vitro studies have implied that cofilin can accelerate transformation of filamentous (F)-actin and (alpha)-actinin latticework into bundles, and overexpression of cofilin induces formation of F-actin bundles in Dictyostelium. Here we expressed an Aequorea green fluorescent protein (GFP)-Dictyostelium cofilin fusion protein in Dictyostelium, and observed the live dynamics to examine the physiological function of cofilin. We show that purified GFP-cofilin binds to actin filaments and decreases the apparent viscosity of actin solution in a similar manner to authentic Dictyostelium cofilin. Expressed GFP-cofilin exhibits normal actin-binding activities in the cytoplasm as represented by incorporation into the actin rods induced with dimethyl sulfoxide. Free moving cells form a crown-like cortical structure on the dorsal surface, and GFP-cofilin exhibits dynamic assembly into actin bundles being formed beneath the cortex. During phagocytosis, GFP-cofilin accumulates into actin bundles formed in the region underlying the phagocytic cups. In cells chemotactically activated with cyclic AMP, GFP-cofilin exhibits a high level of accumulation in projecting leading edges. When the chemo-attraction is experimentally changed, the redistribution of GFP-cofilin towards the new pseudopod occurs in a matter of 30–60 seconds. These results demonstrate that cofilin plays a crucial role in vivo in rapid remodeling of the cortical actin meshwork into bundles.
Publisher
The Company of Biologists
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献