Characterization of a Human Neuronal Culture System for the Study of Cofilin–Actin Rod Pathology

Author:

Tahtamouni Lubna H.12,Alderfer Sydney A.3ORCID,Kuhn Thomas B.2,Minamide Laurie S.2,Chanda Soham2,Ruff Michael R.4,Bamburg James R.2ORCID

Affiliation:

1. Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan

2. Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA

3. Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA

4. Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA

Abstract

Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer’s disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-β (Aβ) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aβ-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aβ between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.

Funder

National Institutes of Health

Colorado State University Development Fund

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3