Occludin as a possible determinant of tight junction permeability in endothelial cells

Author:

Hirase T.1,Staddon J.M.1,Saitou M.1,Ando-Akatsuka Y.1,Itoh M.1,Furuse M.1,Fujimoto K.1,Tsukita S.1,Rubin L.L.1

Affiliation:

1. Eisai London Research Laboratories Ltd, University College London, UK.

Abstract

Endothelial cells provide a crucial interface between blood and tissue environments. Free diffusion of substances across endothelia is prevented by the endothelial tight junction, the permeability of which varies enormously depending on tissue. Endothelial cells of the blood-brain barrier possess tight junctions of severely limited permeability, whereas those of non-neural tissue are considerably leakier, but the molecular basis for this difference is not clear. Occludin is a major transmembrane protein localizing at the tight junction. In this study, we show, by immunocytochemistry, that occludin is present at high levels and is distributed continuously at cell-cell contacts in brain endothelial cells. In contrast, endothelial cells of non-neural tissue have a much lower expression of occludin, which is distributed in a discontinuous fashion at cell-cell contacts. The apparent differences in occludin expression levels were directly confirmed by immunoblotting. The differences in occludin protein were reflected at the message level, suggesting transcriptional regulation of expression. We also show that occludin expression is developmentally regulated, being low in rat brain endothelial cells at postnatal day 8 but clearly detectable at post-natal day 70. Our data indicate that regulation of occludin expression may be a crucial determinant of the tight junction permeability properties of endothelial cells in different tissues.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 331 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3